1. Course Title | Mobile Robotics | |||||||
2. Code | 4ФЕИТ01Л008 | |||||||
3. Study program | КСИАР | |||||||
4. Organizer of the study program (unit, institute, department) | Faculty of Electrical Engineering and Information Technologies | |||||||
5. Degree (first, second, third cycle) | First cycle | |||||||
6. Academic year/semester | IV/8 | 7. Number of ECTS credits | 6 | |||||
8. Lecturer | D-r Gorjan Nadzinski | |||||||
9. Course Prerequisites | Passed: Robotics | |||||||
10. Course Goals (acquired competencies): The students will be introduced to the challenges concerning the modeling and control of mobile robots. Upon course completion, the students will be capable of implementing environment interpretation, data processing, mapping, and control algorithms in mobile robotics. | ||||||||
11. Course Syllabus: Introduction and motivation. Locomotion systems. Basic concepts of robot mobility. Sensors and actuators in mobile robots. Kinematics and dynamics of mobile robots – land vehicles. Kinematics and dynamics of mobile robots – aerial vehicles. Control of mobile robots. Localization, perception, SLAM (Simultaneous localization and mapping). Working with Robot Operating System – ROS: filesystem, creating and building packages, understanding nodes, topics, and services, creating publishers and subscribers. | ||||||||
12. Learning methods: Combined: presentations, homework, project assignments, practical laboratory work. | ||||||||
13. Total number of course hours | 2 + 2 + 1 + 0 | |||||||
14. Distribution of course hours | 180 | |||||||
15. Forms of teaching | 15.1. Lectures-theoretical teaching | 30 | ||||||
15.2. Exercises (laboratory, practice classes), seminars, teamwork | 45 | |||||||
16. Other course activities | 16.1. Projects, seminar papers | 30 | ||||||
16.2. Individual tasks | 30 | |||||||
16.3. Homework and self-learning | 45 | |||||||
17. Grading | 17.1. Exams | 0 | ||||||
17.2. Seminar work/project (presentation: written and oral) | 30 | |||||||
17.3. Activity and participation | 0 | |||||||
17.4. Final exam | 70 | |||||||
18. Grading criteria (points) | up to 50 points | 5 (five) (F) | ||||||
from 51to 60 points | 6 (six) (E) | |||||||
from 61to 70 points | 7 (seven) (D) | |||||||
from 71to 80 points | 8 (eight) (C) | |||||||
from 81to 90 points | 9 (nine) (B) | |||||||
from 91to 100 points | 10 (ten) (A) | |||||||
19. Conditions for acquiring teacher’s signature and for taking final exam | Completion of the laboratory work assignments | |||||||
20. Forms of assessment | Two partial written exams are envisaged during the semester (at the middle and the end of the semester, each with a duration of 120 minutes), as well as a mandatory project that the students are supposed to finish and present during the semester.
1. The students who have passed the partial exams and have successfully finished and presented the project, are considered to have passed the course. The presentation of the project is with duration not longer than 60 minutes. The final grade is formed based on the points from the partial exams and the points obtained from the project. 2. In the planned exam sessions a final written exam is taken (duration 120 minutes). The students who have passed the final written exam, and have finished and presented the mandatory project previously during the semester, are considered to have passed the course. The final grade is formed based on the points from the exams, and the points acquired from the project. |
|||||||
21. Language | Macedonian and English | |||||||
22. Method of monitoring of teaching quality | Internal evaluation and polls | |||||||
23. Literature | ||||||||
23.1. Required Literature | ||||||||
No. | Author | Title | Publisher | Year | ||||
1 | Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza | Introduction to Autonomous Mobile Robots, Second Edition | MIT Press | 2011 | ||||
2 | Sebastian Thrun, Wolfram Burgard, Dieter Fox | Probabilistic Robotics | MIT Press | 2005 |