1. Course Title | Electronics 1 | |||||||
2. Code | 3ФЕИТ05З019 | |||||||
3. Study program | EAOIE, EES, EEUM, KHIE, KSIAR, KTI, TKII | |||||||
4. Organizer of the study program (unit, institute, department) | Faculty of Electrical Engineering and Information Technologies | |||||||
5. Degree (first, second, third cycle) | First cycle | |||||||
6. Academic year/semester | II/3 | 7. Number of ECTS credits | 6.00 | |||||
8. Lecturer | Dr Ljupcho Karadjinov | |||||||
9. Course Prerequisites | ||||||||
10. Course Goals (acquired competencies): Gaining basic knowledge and understanding of the principles of operation of electronic devices (OpAmp, diode, bipolar junction transistor and MOSFETs) and basic linear and nonlinear electronic circuits. Acquiring competence and skills for analyzing the operation of electronic circuits, small signal analysis of signal amplifiers, as well as solving practical application electronic circuit examples. |
||||||||
11. Course Syllabus: Introduction to Electronics. Amplifiers: parameters, saturation, power efficiency, amplifier types, ideal amplifier models. Operational Amplifier: symbol, real parameters, ideal model, application circuits in linear operation mode. Ideal diode: model, basic applications as rectifier and logic circuits. Real diode: i-v relationship, approximations in forward and reverse polarization, some application circuits. Zener diode. Piece-linear diode models and small-signal model. Voltage limiters. Rectifiers: half-wave, full-wave, bridge rectifier, capacitive filter, output voltage ripple, voltage multiplier rectifiers. Solid-state semiconductors: p- and n-type semiconductor, drift and diffusion of charge carriers, pn-junction, junction width, breakdown voltage, junction and diffusion capacitances. Bipolar junction transistor: types, semiconductor profiles and principle of operation, Ebers-Mall model, modes of operation, piece-wise linear i-v model, circuit examples. MOSFET: NMOS and PMOS with enhanced and depleted channels, semiconductor profiles and principle of operation, modes of operation, piece-wise linear i-v model, circuit examples. Amplifiers with BJTs and MOSFETs: graphical analysis, small signal model, algorithm for amplifier analysis, circuit examples. |
||||||||
12. Learning methods: Lectures supported by presentations, examples solving auditory exercises, practical laboratory exercises, preparation and presentation of individual project/seminar assignments, homework. |
||||||||
13. Total number of course hours | 3 + 1 + 1 + 0 | |||||||
14. Distribution of course hours | 180 | |||||||
15. Forms of teaching | 15.1. Lectures-theoretical teaching | 45 | ||||||
15.2. Exercises (laboratory, practice classes), seminars, teamwork | 30 | |||||||
16. Other course activities | 16.1. Projects, seminar papers | 0 | ||||||
16.2. Individual tasks | 15 | |||||||
16.3. Homework and self-learning | 90 | |||||||
17. Grading | 17.1. Exams | 40 | ||||||
17.2. Seminar work/project (presentation: written and oral) | 10 | |||||||
17.3. Activity and participation | 10 | |||||||
17.4. Final exam | 40 | |||||||
18. Grading criteria (points) | up to 50 points | 5 (five) (F) | ||||||
from 51 to 60 points | 6 (six) (E) | |||||||
from 61 to 70 points | 7 (seven) (D) | |||||||
from 71 to 80 points | 8 (eight) (C) | |||||||
from 81 to 90 points | 9 (nine) (B) | |||||||
from 91 to 100 points | 10 (ten) (A) | |||||||
19. Conditions for acquiring teacher’s signature and for taking final exam | Completed practical laboratory exercises and project assignments. | |||||||
20. Forms of assessment | Examination comprises two midterm exams (max 120 min), tests during the classes, and a laboratory exercises test at the end of semester. After successful completion of these tests, an oral examination may be required (max 60 min). The final mark is based on the points collected from all mentioned tests and the class activity. When mid term exams are not successfully passed, they are replaced by a written exam (max 120 min) during the exam sessions, with other requirements and rules remaining the same. Use of textbooks, any other notes, mobile phones, or other electronic devices, except the calculator, are not allowed. | |||||||
21. Language | Macedonian and English | |||||||
22. Method of monitoring of teaching quality | Self-evaluation | |||||||
23. Literature | ||||||||
23.1. Required Literature | ||||||||
No. | Author | Title | Publisher | Year | ||||
1 | Adel S. Sedra and Kenneth C. Smith |
Microelectronic Circuits, 6-th edition |
Oxford University Press | 2009 |