Electronics 1

Објавено: June 28, 2022
1. Course Title Electronics 1
2. Code 4ФЕИТ05З018
3. Study program КХИЕ,КСИАР
4. Organizer of the study program (unit, institute, department) Faculty of Electrical Engineering and Information Technologies
5. Degree (first, second, third cycle) First cycle
6. Academic year/semester II/3 7. Number of ECTS credits 6
8. Lecturer D-r Ljupcho Karadjinov
9. Course Prerequisites
Passed: Fundamentals of Еlectrical Еngineering
Taken course: Fundamentals of Electric Circuits
10. Course Goals (acquired competencies): Gaining basic knowledge and understanding of the principles of operation of electronic devices (OpAmp, diode, bipolar junction transistor and MOSFETs) and basic linear and nonlinear electronic circuits. Acquiring competence and skills for analyzing the operation of electronic circuits, small signal analysis of signal amplifiers, as well as solving practical application electronic circuit examples.
11. Course Syllabus: Introduction to Electronics. Amplifiers: parameters, saturation, power efficiency, amplifier types, ideal amplifier models. Operational Amplifier: symbol, real parameters, ideal model, application circuits in linear operation mode. Ideal diode: model, basic applications as rectifier and logic circuits. Real diode: i-v relationship, approximations in forward and reverse polarization, some application circuits. Zener diode. Piece-linear diode models and small-signal model. Voltage limiters. Rectifiers: half-wave, full-wave, bridge rectifier, capacitive filter, output voltage ripple, voltage multiplier rectifiers. Solid-state semiconductors: p- and n-type semiconductor, drift and diffusion of charge carriers, pn-junction, junction width, breakdown voltage, junction and diffusion capacitances. Bipolar junction transistor: types, semiconductor profiles and principle of operation, Ebers-Mall model, modes of operation, piece-wise linear i-v model, circuit examples. MOSFET: NMOS and PMOS with enhanced and depleted channels, semiconductor profiles and principle of operation, modes of operation, piece-wise linear i-v model, circuit examples. Amplifiers with BJTs and MOSFETs: graphical analysis, small signal model, algorithm for amplifier analysis, circuit examples.
12. Learning methods: Lectures supported by presentations, examples solving auditory exercises, practical laboratory exercises, preparation and presentation of individual project/seminar assignments, homework.
13. Total number of course hours 3 + 1 + 1 + 0
14. Distribution of course hours 180
15. Forms of teaching 15.1. Lectures-theoretical teaching 45
15.2. Exercises (laboratory, practice classes), seminars, teamwork 30
16. Other course activities 16.1. Projects, seminar papers 0
16.2. Individual tasks 15
16.3. Homework and self-learning 90
17. Grading 17.1. Exams 40
17.2. Seminar work/project (presentation: written and oral) 10
17.3. Activity and participation 10
17.4. Final exam 40
18. Grading criteria (points) up to 50 points 5 (five) (F)
from 51to 60 points 6 (six) (E)
from 61to 70 points 7 (seven) (D)
from 71to 80 points 8 (eight) (C)
from 81to 90 points 9 (nine) (B)
from 91to 100 points 10 (ten) (A)
19. Conditions for acquiring teacher’s signature and for taking final exam Completed practical laboratory exercises and project assignments.
20. Forms of assessment Examination comprises two midterm exams (max 120 min), tests during the classes, and a laboratory exercises test at the end of semester. After successful completion of these tests, an oral examination may be required (max 60 min). The final mark is based on the points collected from all mentioned tests and the class activity. When mid term exams are not successfully passed, they are replaced by a written exam (max 120 min) during the exam sessions, with other requirements and rules remaining the same. Use of textbooks, any other notes, mobile phones, or other electronic devices, except the calculator, are not allowed.
21. Language Macedonian and English
22. Method of monitoring of teaching quality Self-evaluation.
23. Literature
23.1. Required Literature
No. Author Title Publisher Year
1 Adel S. Sedra and Kenneth C. Smith Microelectronic Circuits, 6-th edition Oxford University Press 2009
23.2. Additional Literature
No. Author Title Publisher Year
1 M. Камиловски Електроника1, електронски елементи УКИМ 2011
2 M. Камиловски Електроника 2 2002 NULL