Mathematics 1

Објавено: October 12, 2018
  1.    Course Title Mathematics 1
  2.    Code 3ФЕИТ08З009
  3.    Study program EAOIE, EES, EEUM, KHIE, KSIAR, KTI, TKII
  4.    Organizer of the study program (unit, institute, department) Faculty of Electrical Engineering and Information Technologies
  5.    Degree (first, second, third cycle) First cycle
  6.    Academic year/semester I/1   7.    Number of ECTS credits 7.00
  8.    Lecturer Dr Aneta Buchkovska, Dr Biljana Jolevska-Tuneska, Dr Biljana Nachevska-Nastovska, Dr Katerina Hadji-Velkova Saneva, Dr Sanja Atanasova, Dr Sonja Gegovska-Zajkova, Dr Vesna  Andova
  9.    Course Prerequisites
10.    Course Goals (acquired competencies):  Understanding of the basic concepts and tools from the differential and integral calculus of a real function of one real variable that are necessary for the study of electrical engineering.
11.    Course Syllabus: Sequences of real numbers, limit of a sequence, properties and operations with convergent sequences, some special sequences. Real functions of one real variable, properties, limit of a function, some special limits. Derivative of a real function of one real variable and its geometric interpretation, a tangent and normal line of a plane curve, basic rules of differentiation, first differential, derivatives and differentials of a higher order, basic theorems of the differential calculus, application of derivatives, L’Hospital’s rule, Taylor’s theorem,  sketching a graph of a function. Indefinite integrals and integration methods, definite integrals, basic theorems of integral calculus, Newton-Leibnitz’s formula, improper integrals, application of the definite integrals to geometry.
12.    Learning methods:  Lectures, presentations, classroom exercises, self-learning.
13.    Total number of course hours 3 + 3 + 0 + 0
14.    Distribution of course hours 210
15.    Forms of teaching 15.1. Lectures-theoretical teaching 45
15.2. Exercises (laboratory, practice classes), seminars, teamwork 45
16.    Other course activities 16.1. Projects, seminar papers 0
16.2. Individual tasks 30
16.3. Homework and self-learning 90
17.    Grading 17.1. Exams 35
17.2. Seminar work/project (presentation: written and oral) 0
17.3. Activity and participation 0
17.4. Final exam 65
18.    Grading criteria (points) up to 50 points     5 (five) (F)
from 51 to 60 points     6 (six) (E)
from 61 to 70 points     7 (seven) (D)
from 71 to 80 points     8 (eight) (C)
from 81 to 90 points     9 (nine) (B)
from 91 to 100 points   10 (ten) (A)
19.    Conditions for acquiring teacher’s signature and for taking final exam Аttend classes regularly and take tests.
20.   Forms of assessment

During the semester, two partial written exams are provided (in the 8th and 15th week of the semester, lasting 90 minutes) and tests that are conducted during the classes. In the exam sessions, a student can take a written exam i (duration 135 minutes).
For students who have passed the partial exams/written exam, a final oral exam can be conducted (duration 60 minutes). The points from the partial exams/written exam, as well as the points from the tests and the final oral exam are included in the final grade.
21.    Language Macedonian and English
22.    Method of monitoring of teaching quality Self-evaluation and surveys.
23.    Literature
23.1. Required Literature
No. Author Title Publisher Year
1 Н.Тунески, Б. Јолевска-Тунеска Диференцијално сметање УКИМ 2009
2 Н.Тунески, Б. Јолевска-Тунеска Интегрално сметање УКИМ 2011
3 С. Геговска-Зајкова, К. Хаџи-Велкова Санева Диференцијално и интегрално сметање на реални функции од една реална променлива ФЕИТ/УКИМ 2015
23.2. Additional Literature
No. Author Title Publisher Year
1 С. Геговска-Зајкова,  Г. Трајковски, А. Бучковска  Збирка решени испитни задачи од математика 1  1996
2  Б. Јолевска –Тунеска, С. Геговска-Зајкова, Е. Хаџиева, К. Санева, Б. Начевска-Настовска  Збирка решени испитни задачи од математика 2  УКИМ/Електротехнички факултет  2004
3  Г. Џејмс

Математика на модерен инженеринг

 АРС Ламина  2009