1. Course Title | Robotics 2 | |||||||
2. Code | 3ФЕИТ01З019 | |||||||
3. Study program | KSIAR | |||||||
4. Organizer of the study program (unit, institute, department) | Faculty of Electrical Engineering and Information Technologies | |||||||
5. Degree (first, second, third cycle) | First cycle | |||||||
6. Academic year/semester | IV/7 | 7. Number of ECTS credits | 6.00 | |||||
8. Lecturer | Dr Gorjan Nadjnski | |||||||
9. Course Prerequisites | ||||||||
10. Course Goals (acquired competencies): The students will be introduced to the concepts of design and control of industrial manipulators, and will be enabled to design and implement practical robot control systems. |
||||||||
11. Course Syllabus: Introduction, basic concepts of robot control. Trajectory planning, joint space trajectories, working space trajectories, trajectory calculation techniques – cubic interpolation. Manipulator control, feedback control, P, PD, PI, PID control, path following. Decentralized control, independent joint control, decentralized feed-forward compensation. Centralized control, PD control with gravity compensation, inverse dynamics control, robust control, adaptive control. Workspace control. Force feedback control, manipulator-environment interaction, position feedback force control, velocity feedback force control, parallel force and position control. |
||||||||
12. Learning methods: Combined: presentations, homework, project assignments, practical laboratory work. | ||||||||
13. Total number of course hours | 2 + 2 + 1 + 0 | |||||||
14. Distribution of course hours | 180 | |||||||
15. Forms of teaching | 15.1. Lectures-theoretical teaching | 30 | ||||||
15.2. Exercises (laboratory, practice classes), seminars, teamwork | 45 | |||||||
16. Other course activities | 16.1. Projects, seminar papers | 45 | ||||||
16.2. Individual tasks | 30 | |||||||
16.3. Homework and self-learning | 30 | |||||||
17. Grading | 17.1. Exams | 0 | ||||||
17.2. Seminar work/project (presentation: written and oral) | 40 | |||||||
17.3. Activity and participation | 0 | |||||||
17.4. Final exam | 60 | |||||||
18. Grading criteria (points) | up to 50 points | 5 (five) (F) | ||||||
from 51 to 60 points | 6 (six) (E) | |||||||
from 61 to 70 points | 7 (seven) (D) | |||||||
from 71 to 80 points | 8 (eight) (C) | |||||||
from 81 to 90 points | 9 (nine) (B) | |||||||
from 91 to 100 points | 10 (ten) (A) | |||||||
19. Conditions for acquiring teacher’s signature and for taking final exam | Regular attendance at classes and completion of the laboratory work assignments. | |||||||
20. Forms of assessment | Two partial written exams are envisaged during the semester (at the middle and the end of the semester, each with a duration of 120 minutes), as well as a mandatory project that the students are supposed to finish and present during the semester. 1. The students who have passed the partial exams and have successfully finished and presented the project, are considered to have passed the course. The presentation of the project is with duration not longer than 60 minutes. The final grade is formed based on the points from the partial exams and the points obtained from the project. 2. In the planned exam sessions a final written exam is taken (duration 120 minutes). The students who have passed the final written exam, and have finished and presented the mandatory project previously during the semester, are considered to have passed the course. The final grade is formed based on the points from the exams, and the points acquired from the project |
|||||||
21. Language | Macedonian and English | |||||||
22. Method of monitoring of teaching quality | Internal evaluation and polls. | |||||||
23. Literature | ||||||||
23.1. Required Literature | ||||||||
No. | Author | Title | Publisher | Year | ||||
1 | Rafael Kelly, V. S. Davila, J. A. L. Perez | Control of Robot Manipulators in Joint Space | Springer | 2005 |